Circulant Digraphs and Monomial Ideals
نویسندگان
چکیده
It is known that there exists a Minimum Distance Diagram (MDD) for circulant digraphs of degree two (or double-loop computer networks) which is an L-shape. Its description provides the diameter and the average distance of the graph on constant time. In this paper we clarify, justify and extend these diagrams to circulant digraphs of arbitrary degree by presenting monomial ideals as a natural tool. We obtain some properties of the ideals we are concerned to. In particular, we prove that the corresponding MDD is also an L-shape in the affine r-dimensional space. We implement in PostScript language a graphic representation of MDD’s for circulant digrahs with two or three jumps. Given the irredundant irreducible decomposition of the associated monomial ideal, we provide formulae to compute the diameter and the average distance. Finally, we present a new and attractive family (parametrized with the diameter d > 2) of circulant digraphs of degree three having an irreducible monomial ideal.
منابع مشابه
Betti numbers of transversal monomial ideals
In this paper, by a modification of a previously constructed minimal free resolution for a transversal monomial ideal, the Betti numbers of this ideal is explicitly computed. For convenient characteristics of the ground field, up to a change of coordinates, the ideal of t-minors of a generic pluri-circulant matrix is a transversal monomial ideal . Using a Gröbner basis for this ideal, it is sho...
متن کاملCayley Digraphs of Finite Abelian Groups and Monomial Ideals
In the study of double-loop computer networks, the diagrams known as L-shapes arise as a graphical representation of an optimal routing for every graph’s node. The description of these diagrams provides an efficient method for computing the diameter and the average minimum distance of the corresponding graphs. We extend these diagrams to multiloop computer networks. For each Cayley digraph with...
متن کاملAsymptotic behaviour of associated primes of monomial ideals with combinatorial applications
Let $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring $R=K[x_1,ld...
متن کاملCastelnuovo-Mumford regularity of products of monomial ideals
Let $R=k[x_1,x_2,cdots, x_N]$ be a polynomial ring over a field $k$. We prove that for any positive integers $m, n$, $text{reg}(I^mJ^nK)leq mtext{reg}(I)+ntext{reg}(J)+text{reg}(K)$ if $I, J, Ksubseteq R$ are three monomial complete intersections ($I$, $J$, $K$ are not necessarily proper ideals of the polynomial ring $R$), and $I, J$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...
متن کاملInfinite Circulant Digraphs and Random Infinite Circulant Digraphs
In this paper, we completely determine the connectivity of every infinite circulant digraphs and prove that almost all infinite circulant digraphs are infinitely strongly connected and therefore have both oneand two-way infinite Hamiltonian paths.
متن کامل